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ABSTRACT

:'.A

This paper addresses the problem of probabilistic reasoning as it applies to Truth Maintenance
Systems. A Belief Maintenance System has been constructed which manages a current set of
probabilistic beliefs in much the same way that a TMS manages a set of true/ralse beliefs. Such
a system may be thought of as a generalization of a Truth Maintenance System. It enables one
to reason using normal two or three-valued logic or using probabilistic values to represent partial
belief. The design of the Belief Maintenance System is described and some problems are
discussed which require further research. Finally, some examples are presented which show the
utility of such a system. ,

This is a revised version of a paper which appears in the Proceedings of the Second Workhop on
Uncertainty and Probability in Artificial Intelligence, Philadelphia, August, 1986. 1
This research is supported by the Office of Naval Research, Contract No. N00014-85-K-0559.
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1. INTRODUCTION U
There currently exists a gap between the theories proposed by the probability and

uncertainty community and the needs of Artificial Intelligence research. These theories primarily
address the needs of expert systems, proposing computational models using knowledge structures
which must be pre-compiled and remain static in structure during runtime. Many Al systems
require the ability to dynamically add and remove parts of the current knowledge structure (e.g.
in order to examine what the world would be like for different causal theories). This requires
more flexibility than existing uncertainty systems display. In addition, many Al researchers are
only interested in using "probabilities" as a means of obtaining an ordering, rather than
attempting to derive an accurate probabilistic account of a particular situation. This indicates
the need for systems which stress ease of use and don't require extensive amounts of conditional
probability information when one cannot (or doesn't wish to) provide such information. This
paper attempts to help reconcile the gap between approaches to uncertainty and the needs of
many Al systems by examining the control issues which arise, independent of a particular
uncertainty calculus, when one tries to satisfy these needs.

Truth Maintenance Systems have been used extensively in problem solving tasks to help
organize a set of facts and detect inconsistencies in the believed state of the world. These
systems maintain a set of true/false propositions and their associated dependencies. In trying to
reason about real world problems, however, situations often arise in which we are unsure of
certain facts or in which the conclusions we can draw from available information are somewhat
uncertain. The non-monotonic TMS (Doyle, 1979; McDermott and Doyle, 1980) was an attempt
at reasoning when all the facts are not known. Non-monotonic systems, however, fail tc take
into account degrees of belief and how available evidence can combine to strengthen a particular
belief.

This paper addresses the problem of probabilistic reasoning as it applies to Truth
Maintenance Systems. It describes a Belief Maintenance System that manages a current set of
beliefs in much the same way that a TMS manages a current set of true, false propositions. If the
system knows that our belief in fact, is dependent in some way upon our belief in fact,, then it
automatically modifies our belief in fact, if we give it some new information which causes a
change in belief of fact,. It models the behavior of a normal TMS, replacing its 3-valued logic
(true, false. unknown) with an infinite-valued logic, in such a way as to reduce to a standard
TMS if all statements are given in absolute true,, false terms. We can therefore think of Belief
Maintenance Systems as simply a generalization of Truth Maintenance Systems. whose possible
reasoning tasks are a superset of those for a TMS.

2. DESIGN

The design of the belief maintenance system is based on current TMS technology,
specifically a monotonic version of Doyle's justification-based TMS (1979). As in the TMS. a
network is constructed which consists of nodes representing facts and justification links between
nodes representing antecedent support of a set of nodes for some consequent node. The BMS
differs in that nodes take on a measure of belief rather than true or false and justification links
become support links in that they provide partial evidence in favor of a node.

The basic design consists of three parts: (1) the conceptual control structure. (2) the iser
hooks to the knowledge base, and (3) the uncertainty calculus. A simpie parser is used to -

translate user assertions (e.g. (imDies (and a b) c) ) into control primitives. This enables
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the basic design to be semi-independent of the belief system used.' All that is required of the
belief formalism is that it is invertable. Specifically, if A provides support for B and our belief in
A changes, we must be able to remove the effects the previous belief in A had on our belief in B.

2.1. An Overview of Dempster-Shafer Theory

The particular belief system used here is based on the Dempster-Shafer theory of evidence
(Shafer, 1976: Barnett, 1981: Garvey et al. 1981). This theory combines Dempster's rule for the
combination of belief functions with Shafer's representation of beliefs. Shafer's representation
expresses the belief in some proposition A by the interval [ s(A), p(A) 1. s(A) represents the
current amount of support for A or the minimum probability of A. p(A) is the plausibility of A
and establishes a maximum probability for A. It is often best to think of p(A) in terms of the
lack of evidence against A, for p(A) = 1 - s(-,A). In this representation, the uncertainty of A's
probability is given by p(A) - s(A). To simplify calculations, the belief maintenance system
represents Shafer intervals by the pair (s(A) s(-gA)) rather than the interval 's(A) p(A)
(Ginsberg, 1984).

Dempster's rule provides a means for combining probabilities based upon different sources
of information. His language of belief functions defines a frame of discernment, E, as the
exhaustive set of possibilities or values in some domain. For example, if the domain represents
the values achieved from roiling a die. 3 is the set of 6 propositions of the form "the die roiled a
j." If m1 and m, are two basic probability functions over the same space e, each representing a
different knowledge source, then Dempster's rule defines the new combined probability function -a

m for all subsets C of e to be ,

I - C ,,,A,)mo(B) -,

A, ns, - o

This is also known as Dempster's orthogonal sum and is stated as m = m M m2. Note that the :J
denominator is a normalizing Factor, removing probability given to the empty set and ensuring
that the total probability for the new function is still one.

Since our primary interest here is -he use of probabiiity theory in a deductive reasoning
system. we are interested in the case where s9 contains only two vaiues. A and -A. For this case.
the basic prooability function has only three values. m(A), m(--A), and me(O). This allows -he
derivation of a simplified version of Dempster's formula iPrade. 1983: Ginsberg, 1984):

(a bl {c ,i) , ' - - a t-cp - --- ' #-____
I - Iad - ic) L 2-aa - e

where a means 1 - al. It also allows us to formulate an inverie function for subtracting evidence
'Ginsberg, 1984):

= d - 4ae cd c - idd J

The decision .o choose Dempster-Shafer Theory over Bayesian Decision Theory, certainty
factors, or some other system of beliefs was purely pragmatic. Dempster-Shafer has been shown

Here , . ;se "belief" "pronaniity* lad incertainty nterchangaiov. without ntending i particular ,ystem e g Bav-s
Charniak. !t -i 1980. Pearl. 1983. L986), Dernpster-ihafer -Shafer 19781 Certainty Fctors Bucranan %ad Short.fe. 1984(

%.
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to be invertable, it distinguishes between absolutely unknown (no evidence or (0 0)) and
uncertain, and it is simple to use. However, the design of the BMS is not based on a particular
uncertainty calculus and there should be little difficulty (as far as the BMS itself is concerned) in -

adapting it to use some other belief system.

2.2. A Logic of Beliefs

The conventional meaning of two-valued logic must be redefined in terms of evidence so
that the system can interpret and maintain its set of beliefs based on the user-supplied axioms.

Not
Because Dempster-Shafer theory allows us to express belief for and belief against in a

single probability interval, (not A) and A can simply be stored as the same proposition, A,
where

o t A ) , = A , . .

And
There are a number of approaches to the meaning of AND. The interpretation used here

takes into account the fact that we are dealing with measures of beliei rather than probabilities
and corresponds to that of (Garvey et al. 1981):

A (S A 3.4

Csc 
-

(A & B & C) , rrxi0 s.. -2, m -x '  '&-)

The -2 term represents it - cardinalitylconjunctsi).
OR

Both 'Garvey et A. 1981) and lRodewaid, 1984) nefine he belief :n OR -o 3e rhe
maximum oi the individuai beliefs:

B. 1  'W

iA v B),

IMPLIES
There are wo theories n ne iterature ,or che interpretation of impiies ising Dempster-

Shafer. Dubois and Prade. 19851 iutigests that. for A-B. -e take into account the value of
BeHIB--A). This causes -he beiief In B ro oe erived as
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(A -- B(,

I (B - A)(,, s,)A (s A  s -)

B(Max(o, 1 + 8 A I) max(o, 8i+ A ))

Because the BMS should be simple to use and because Bel(B-A) can be difficult to obtain, the
use of implies will be the same as given in (Ginsberg, 1984; Dubois & Prade, 1985):

(A - B)(, ,.q)

This adheres to the idea that if full belief in A implies B then a half belief in A should imply

Bo0 .

With these operators defined, the system can parse all user assertions and construct the
necessary support links with the appropriate belief functions attached to them.

2.3. Support Links

A support link consists of a list of antecedent nodes, a consequent node, its current positive
and negative support for its consequent, and a function for recalculating its support based on the
current belief of the antecedents (when the support is provided by the user, forming a premise
link, no such function exists). Figure 1 shows a sample support link network. The system
recognizes two types of support links - hard links and invertable links.

2.3.1. Hard Support Links

A hard support link is one which provides an absolute statement of its consequent's belief.
For example, statements of the form

A
(0.5. .0)

A&B 1.0 . o.o C
(0.2 . 0.0) (0.15 . 0.24)

B

(0.00 0.0) D 10.7)
!0.4 . 0.0

Figure 1. A Sample BMS Network

.6
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(implies x (and y z))
are translated into

(implies x y)
(implies x z)

As a result, nodes are never allowed to give support directly to an "and" node and the oniy
support entering an "and" node must come from the individual conjuncts. A support link for an
"and" node is therefore given the status hard link and the value of the consequent node equals the
link's support. In Figure 1, if the belief in A changes, a new value is calculated for the
conjunctive link using its attached formula for AND, and the node for (AND A B) is set to the
new value.

2.3.2. Invertable Support Links

Links representing implication or user support act as only one source of evidence for their
consequent node. Such links are designated invertable since a change in their support means that
their oid support must be subtracted (using the inverted form of Dempster's rule) before the new
value is added. In Figure 1, if the belief in D changes, then the current support provided by D's
link into C is subtracted, the link support is recalculated, and the new support is added to C
(using Dempster's rule).

2.4. Control

The basic control structure of the BMS is similar to that of a TMS. When the belief in a
node is modified, the affects of this new belief are propagated throughout the system. This is 'A
done by following the node's outgoing links and performing the appropriate operations for
modifying hard and invertable links' support. Propagation of evidence may be defined so as to
terminate early (Ginsberg, 1985a). If the system sees that the change it has just made o a
node's belief state is sufficiently small, there is no need for it to propagate this change to every
node dependent upon it. A threshold value, *propagation-delta', is defined so that, when the
change to a node's positive and negative beliefs are less than the threshold. the system will not

continue to propagate changes past this node. The default threshold is 10- 3.

In a TMS architecture, only one justification is needed to establish truth. Any independent
justifications are extraneous. Using a probabilistic architecture, each source of support adds to
the node's overall belief. We must keep track of all incoming supports, combining them using
Dempster's rule to form the overall belief for the node, If one tries to combine two contradicting,
absolute beiiefs, (1 0) - (0 1), the system would simply detect the attempt and signal a
contradiction in the same way that a TMS would. Thresholds could also be used so that if a
strongly positive belief is to be combined with a strongly negative belief, the system could signal
a contradiction. Caution should be used for this case, however, because we don't want to
interpret non-monotonic inferences as contradictions.

2.4.1. New Control Issues

Circular support structures like that of Figure 2 cause a number of problems for nelief

maintenance. Because of these problems. the current implementation requires that no such%
structures exist and it will signal an error if one is discovered. There are a variety of prooiems N
which the structure in Figure 2 can cause:

(1) interpretation of circular evidence. When A is partially believed and the status oC E is
unknown, what can he said about rhe support which D provides to B? All of the evidence D
is iuppiying o B originally came :'rom B in 'he tirst place. Because all inks entering B %ii

eL," . ' ej.,See." ."..', "e ,"2 '_ ,_4' e'.,? , "e" ".." , " "e " "e - ",,J".".' "' i , e ,K. e"/ ; '# J" " "e , ,' - 'J'-S
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E
D C

A \ .

30p

Figure 2. Circular Support Structure

combine according to Demnster's rule to form a single belief. B may be believed more
strongly than A simply because B supplies evidence in favor of D through C. This does not
seem intuitively correct.

(2) Problems with possible cures. There are several potential solutions to this problem. First,
we could simply allow D to provide support for B. This situation would appear to be
undefined under normal probability theory. Second, we could stop the chain at D by not
allowing any node to provide support to one of its supporters (by transitivity). This
introduces a new problem. What should happen when E is providing independent support
for D? Forcing the system to only propagate those supports for D which are independent of
B would require a much more sophisticated control structure.

(3) Retraction or modification of support. Modifying support links becomes much more difficult
if we allow circular support structures to exist in the system. Any time the support A
provides B changes, the old support it provided must be retracted. This means removing
all support from A. propagating the change in B, adding in the new support from A. and
propagating the new belief in B. This will cause the belief in C to be propagated four times
(twice when B changes the first time and twice when B changes the second time), the beiief
in D to be propagated S times. etc. In addition. retracting the support A provides B means
that we must retract all support for B (to remove the effects D has on B), propagate rhe
new lack of belief in B. and then recalculate a new belief for B based on the new value for -k
and the current values of its other support links. Doing this every time rhe belief for any
node changes makes such a system unusable. When we assume there is no circular suppor,
in the network, modifying our belief in A simply involves subtracting its old support for B.
adding in its new support for B. and then propagating our new belief in B.

The use of beliefs also causes probiems for systems that exoiicitly calculate transitivir
relations. Suppose we were to assert A - C based on the knowledge A - B and B - C. This
iction would cause the systems belief ,n C to increase, even though we were -zmpiV making
nformation which already existed explicit.

2.5. User Support

The system has been designed so that it will appear to operate in exactly the same manner
as the standard justification-based TMS. Thus, it is able to handle assertions using -he
connectives AND. OR. NOT. and [MPLIES. If a contradiction occ irs. the system will notify" rhe

% % % %
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user and seek to resolve the contradiction. In addition to the normal TMS operations, the BMS
supports additional operations corresponding to its belief-oriented knowledge.

2.5.1. Queries

!n the TMS. queries are of the form Itrue? itatement). Now that truth is measured in rerms
of belief, we can extend the query language. Truth is redefined in terms of a threshold, so that a
belief over a certain threshold is considered to be true.

true? = belief+(node) > *belief-threshold*
false? = belief-(node) > *belief-threshold*
unknown? = belief+(node) < *belief-threshold*

and belief-(node) < *belief-threshold*
absolutely-true? = belief+(node) = 1.0
absolutely-false? belief-(node) = 1.0
absolutely-unknown? belief+(node) 0.0

and belief-(node) = 0.0
support-for = belief-(node)
support-against = belief-(node)
possible-true = I - belief-(node)
possible-false = I - belief-(node)
belief-uncertainty = I - belief-(node) - belief-(node)

2.5.2. Frames of Discernment

In addition to the default usage of the simplified version of Dempster's rule, where each
node is treated as a frame of discernment, e, containing :A, -,A, the user may define a specific
frame of discernment by the function call:

(frame-of-discernment nodel node 2 ... node)

This establishes a frame-of-discernment stating that the given nodes represent an exhaustive set
of possibilities or values in some domain. Evidence in favor of one node acts to discredit beiiei In
the other members of the iet. Evidence may be provided to support any of the nodes f'rom
outside the set. but no support link is allowed to change from its initial non-zero value. This is
due to the (current) uninvertability of the general form of Dempster's rule. When new evidence
is provided for one of the nodes in the set. the belief in all the nodes is recalculated according -o
Dempsters orthogonal sum so that the sum of the beiiefs for the nodes in the set is less-than or
equal-to one. The affect of these changes are then propagated to any support these nodes
provide to the rest of the system.

In Figure 3. the nodes 'a. b, c! have been defined as a frame of discernment. x provides 0.6
support for a, 7 provides 0.3 support for b. and z provides 0.8 support for -. These
independent sources of evidence combine using Dempster's orthogonal sum to form a normalized
set of beliefs in a. b. and c 0..2. 0.06. 0.38 respectively).

2.5. Rule Engine

Because the BMS does not allow variables to exist in the knowledge base. pattern-directed
rules are required to provide demons which trigger on certain events in the knowledge base
iMcAllester. 1980: Charniak et al, 1980L The rules are of the form:

.?
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> (frame-of-discernment a b c)
> (assert (implies x a))
> (assert (implies y b))
>(assert (implies z c))
> (assert x 0 6)
>(assert y 0.- 3)
> (assert z 0 8)

>(why-nodes)

Xhas evidence (0 6, 0 0) due to
USER (0 6, 0.0)

Y has evidence (0.3, 0.0) due to
USER (0 3, 0. 0)

Z has evidence 'O 9, 0 0) due to
USER (0 8, 0. 0)

USER-THETAI has evidence (0. 1443, 0 0) {uncertainty for the entire frame -(e)
Ahas evidence (0 2165. 0 0) due to
IMPLICATION(X) (0.6, 0 0)

B has evidence '0 0619. 0 0) due to
IMPLICATION(Y) (0 3. 0 0)

C has evidence (0 5773, 0 0) due to
IMPLICATION(Z) (0.8, 0 0)

Figure 3. An Example of a Frame-of-Discernment

(rule (nested-triggers) body)

For example, the rule

(rule ((:INTERN (dog ?x)))

(assert (implies (dog lx' 'mammal 'x'/'

causes the implication (impIies (dog fido) (mamma fido) ) to be asserted when \aCg

f -do) first appears in the knowledge base (whether it is believed or not).

The rule

.rule (( NTERN (foo Ix) test (numberp Ix) :ar 'the-form-foo)

(:BELIEF+ (bar 'y) 0 8 var 'the-form-bar)
BELIEF- (mumble 1z) 0 9 var 'the-form-mumble))

(format t -- A is been interned" ?the-form-foo)
,format t '-%The support in favor of -A is now greater than 0 8" 'the-for=--ar
'format t '-%The support against -A is now greater than 0 9' 'the-form-mumoIe)'

inows all of the pctentiai operations in a rule. Each trigger contains a keyword le.g. :INTERN.
a pattern (e.g. Ifoo 'x)), an optional test which must be true for the rule to Fire. and an optional
var argument which causes a specified variable to be bound to the trigger's instantiated pattern.
There are three types of rule triggers. The : INTERN trigger causes the rule to :ire each time a
new fact is added "o the knowiedge base which matches -he given pattern. The 737h ' - 5.

10

% -... . . . . ....................
S'.v % * 5' . • .o" . . .. " -, ? *'*
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causes the rule to fire each time the support in favor of an instance of its pattern First exceeds the
specified value. A BELJEF- rule fires when the support against its pattern exceeds the spec;f.d
value.

3. EXAMPLES

There are a number of possible uses for a belief maintenance system. It enables us to
perform normal TMS, three-valued, deductive logic operations. It also enables Us 3o reascjn - in
probabilistic or uncertain information. The following sections discuss some of the applications
for the BMS.

3.1. Two-Valued Deductive Reasoning e.

The system's design has enabled us to think of it as a superset of a TMS .-ks a resiiii. -%
can make assertions such as

(assert (ipmDies a b))
asser. (i==_=es ,
(assert a)

and the system will automatically propagate the fact that b and c are tr ie If we 'he Z-i
that c was false, the system would signal a contradiction and indicate ,nar he con r ,"
results ,rom the two aser premises a an" .t"

p

3.2. Probabilistic Reasoning

In addition to true false deductions, the belief maintenance system is able 'o sra ,-
current partial belief in a particular item and the sources of this belief. For exampie. n Fi.
C has a belief of 0.9 since all of the be!ief in A serves as evidence 'or - D. on "he o
has a belief of only 0.27 since C implies 3 by oniv 0.3. E has _wo ,ources of -I'. ir e D. -

0.9 evidence *n favor of E. while ^ proides 0.36 evidence agains- E.

3.3. Non-Monotonic Reasoning
I-

A belief maintenance system s able to handle non-monotonic reasoning mrcn -
. iegantiy .han a two or "hree valuea 'oeic is aoie to Ginsberg, AS4. 191.h'. ,on-,iuer ne
non-monotonic probiem about birds "n Yenerai" :etng able -o tly. If one were -o repace i "i.e
using Doyle's : 19791 consistency operator

birdX) A Mfl!X, - flyiX,

with a probabilistic one stating that roughly 90 to 95'" of all birds fly

bird 'x! ifly 'xl 0 9 0  0o5

the desired non-monotonic behavior 7omes automatically from negative ruies iuch as

lostrich "xl - ;fly 'x, , .-

If we know Tweetv to be a bird ana in ostrich. -he ,wo rules will combine o deduce -

-xeet7 0 or foa if y t -ee " - ), . No modifications of the ,-ontroi structure are
needed to perform non-monotonic reasoning.

% % % %
-S ' _ 4
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>(assert (implies (or a b) c))
>(assert (implies c d (0.3 0.0)))
>(assert "implies c a))
>(ausert (implies (and a f) (and g h)))
>(assert (implies g (not e) (0.4 . 0.0)))
>(assert a 0.9)

>(assert f)
(why-nodes)

F is a premise.
(AND A F) has evidence (0.9, 0.0) due to

CONJUNCTION(F A) (0.9, 0.0)
H has evidence (0.9. 0.0) due to

IMPLICATION((AND A F)) (0.9, 0.0)
G has evidence (0 9, 0 0) due to

IMPLICATION((AND A F)) (0.9, 0.0)
E has evidence (0.8521, 0.0533) due to

LIMPLICATION(G) (0.0, 0.36)
IMPLICATION(C) (0 9, 0.0)

D has evidence (0.27, 0.0) due to
IMPLICATION(C) (0.27, 0.0)

B is unknown
A has evidence (0.9, 0.0) due to

USER (0.9, 0.0)
(OR A B) has evidence (0.9, 0.0) due toDISJUNCTION(B A) (0 9, 0 0)
C has evidence (0.9, 0.0) due toV. IMPLICATION((OR A B)) (0 9, 0.0)

Figure 4. Probabilistic Deductive Reasoning

I

3.4. Rule-based Pattern Matching

The belief maintenance system has been used to implement a rule-based, probabilistic
pattern matching algorithm which is able to form the type of matching typical in analogies in a
manner consistent with Gentner's Structure-Mapping Theory of analogy (Gentner. 1983:
Falkenhainer. Forbus, & Gentner, 1986). For example. suppose we tried to match

(AND (CAUSE (GREATER (PRESSURE beaker) (PRESSURE via.,)
(a) (FLOW beaker vial water pipe))

(GREATER (DIAMETER beaker) (DIAMETER 7iai)))

with

(AND (GREATER (TEMPERATURE coffee) (TEMPERATURE ice-cube))
(b) (FLOW coffee ice-cube heat bar)) %

A standard unifier would not be able to form the correspondences necessary for those two forms
to match. First, the forms are different in their overall structure. Second, the arguments of
similar substructures differ, as in (FLOW beaker vial water oipe) and (FL3W coffee
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ice-cube heat bar). The rule-based pattern matcher, however, is able to find all consistent
matches between form (a) and form (b). These matches correspond to the possible
interpretations of the potential analogy between (a) and (b). They are

(GREATER (PRESSURE beaker) (PRESSURE tial)) -

(1) (GREATER (TEMPERATURE coffee) (TEMPERATURE ice-cube))

(FLOW beaker vial water pipe) - (FLOW coffee ice-cube heat bar)

(GREATER (DIAMETER beaker) (DIAMETER vial))
(2) (GREATER (TEMPERATURE coffee) (TEMPERATURE ice-cube))

The pattern matcher works by first asserting a match hypothesis for each potential predicate or

object pairing between (a) and (b) with a belief of zero. For example, we could cause all

predicates having the same name to pair up and all functional predicates (e.g. PRESSURE) to 7

pair up if their parent predicates pair up (e.g. GREATER). The likelyhood of each match

hypothesis is then found by running match hypothests evidence rules. For example, the rule

(assert same-functor) proeide a name for the source of the rule's support

(rule (( intern (MH "'i %2) test (and (fact? ':1) (fact' %2)(equal-functors 711 712))))

(assert (implies same-functor (MH 7i %2) (0.5 0.0))))

states "If the two items are facts and their functors are the same, then supply 0.5 evidence in

favor of the match hypothesis." After running these rules, the BMS would have the beliefs shown

in Figure 5.

Match Hypothesis Evidence
(IH GREATER,,I, GREATER-op,,,) 0.650

(,i- GREATER =.,, GREATER.,* ,f=.,) 0.550

(MH PRESSURE , TEMPERATLTRE..) 0.712

(MH PRESSURE,, TE MPERATURE...) 0.712

(MH DEAMETERb... TEMPERATLTREC.. 0.712
(MM DIAfMETER TENMPERATLCRE1 .. ) 0.712

(MH FLOW . FLOW..) 0.790

(MH beaker coffee) 0.932

(MH vial ice-cube) 0.932
(NIH water heat) 0.632

(N pipe bar) 0.632

Figure 5. BMS State After Running Match Hypothesis Evidence Ruies
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The pattern matcher then constructs all consistent sets of matches to form global matches

such that no item in a global match is paired up with more than one other item. (1) and (2) are

examples of such global matches. Once the global matches are formed, the pattern matcher must

select the "best" match. To do this, a frame of discernment consisting of the set of global

matches is created and giobal match evidence rules are used to provide support for a giobai
match based on various syntactic aspects such as overall size or "match quality". For example,
we could have match hypotheses provide support in favor of the global matches they are
members of. Thus, the pattern matcher would choose global match (1) because the match
hypotheses provide the most support for this interpretation. This is a sparse description of the
matching algorithm discussed in (Falkenhainer et al, 1986).

0

4. CONCLUSIONS

The design of a belief maintenance system has been presented and some of its possible uses
rokdescribed. This system differs from other probabilistic reasoning systems in that it allows

dynamic modification of the structure of the knowledge base and maintains a current belief for
every known fact. Previous systems have used static (compiled) networks (Pearl, 1983, 1986;

'. Buchanan et al, 1984) which cannot be dynamically modified or simple forward chaining
techniques which don't provide a complete set of reason-maintenance facilities (Buchanan et al,
1984; Ginsberg, 1984, 1985).

There are still a number of unsolved problems. First, the interpretation and efficient
implementation of circular support structures needs to be examined further. Second, operations
such as generating explicit transitivity relations cause new problems for belief based reasoning
systems. What is important to note is that the basic design is independent of the belief system

used. For any given uncertainty calculus which is invertable, the assertion parser can be
modified to construct the appropriate network.
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